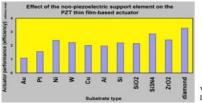
Ferroelectric/Piezoelectric-Diamond Hybrid Heterostructures for High Performance MEMS/NEMS Device

Sudarsan Srinivasan,¹ Jon Hiller,² Gouren Bai,¹ John Carlisle,¹ and Orlando Auciello,¹

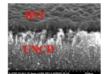

¹Materials Science Division, ²Electron Microscopy Center, Argonne National Laboratory

Motivation

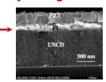
Integration of ultra nano-crystalline diamond (UNCD) layers with outstanding mechanical, tribological and biocompatible properties with ferroelectric/piezoelectric functional materials for new generation MEMS/NEMS devices

Major Accomplishments

Theory indicates that integration of functional piezoelectric and UNCD materials produces optimized MEMS/NEMS device performance

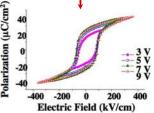

Analytical expressions were derived to calculate the dynamic behavior of MEMS/NEMS actuators/sensors for different materials integrated with PZT (diamond is the best substrate)

V: Applied external voltage
L: Length of the actuator
L; Thickness of the piezoelectric element
L; Thickness of the non-piezoelectric element

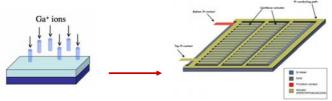

Schematic of PZT/UNCD actuator

Experimental demonstration of high-K dielectric and piezoelectric PbZr_xTi_{1-x}O₃ (PZT) thin film / UNCD layer integration

TiAl (10 nm) __ O₂ diffusion barrier

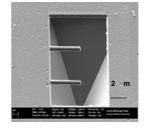


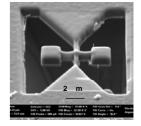
UNCD etched during BaSr_xTi_{1-x}O₃ oxide film growth on top



sharp interface between UNCD and PZT

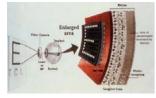
First Pt/PZT/Pt/TiAl/ capacitor structure
Grown on UNCD substrate demonstrated with excellent polarization properties

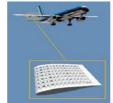



Fabrication of micro/nano UNCD cantilevers using the focused ion beam (FIB) etching technique

Schematic of the FIB method to fabricate UNCD cantilevers

1st prototype of micro and nano PZT/UNCD actuators on chip for MEMS/NEMS devices




SEM images of UNCD cantilevers and paddle resonators fabricated using FIB, for subsequent growth of TIAI/Pt/PZt/Pt Heterostructure to demonstrate piezoactuation of UNCD cantilevers

Impact

Successful Piezomaterial/UNCD integration will revolutionize the fields of medicine, defense and semiconductors with the next generation UNCD based MEMS/NEMS devices

Bioinertness of UNCD opens way to MEMS/NEMS biodevices (e.g. piezoelectric pressure sensor for artificial retina with Pb-free biocompatible piezoelectric layer)

Piezoelectric MEMS sensors and actuators for drag reduction on aircraft (NASA LaRC).

piezoelectric sensors under the seat deploy an air bag more softly if the passenger is in a dangerous position

Future Directions

- Optimization of processing for integration of functional PZT films on UNCD cantilevers for MEMS/NEMS applications
- Characterization of PZT/UNCD cantilevers performance
- Extend the integration to other functional (eg. Multiferroics) materials on UNCD
- Demonstration of hybrid PZT/UNCD sensor
- S. Srinivasan, O.Auciello et al, International Symposium on Integrated Ferroelectrics, April 23-26, Honolulu, Hawaii (2006).

conjugate molecular